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Determinants of efficient growth boundaries with balanced budgets

and stochastic rents

Abstract

This article extends Ding et al. (1999) to investigate the design of growth

boundary controls in an open city in a framework where a congestible public good is

priced at average cost. Unlike Ding et al., we consider that urban rents evolve

stochastically over time and that the regulator can slacken the boundary control when

urban rents move upward. We provide three novel testable implications, namely, the

regulator will set a more stringent boundary control policy if (i) developers expect

urban rents to grow less rapidly; (ii) developers expect urban rents to be more volatile;

and (iii) it costs less for the regulator to implement the control policy.
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Determinants of efficient growth boundaries with balanced budgets

and stochastic rents

I. Introduction

As a city boundary expands with population growth, supply of public goods may

become a financial burden for the city government because the cost for supplying

them may increase substantially with spatial expansion. At the same time, the city

government may need to maintain balanced budgets such that it may opt to price

public goods at average cost and simultaneously restrict the city boundary.1

While Ding, Knaap, and Hopkin (1999) have investigated the design of growth

boundary controls in a monocentric open city framework where a congestible public

good is priced at average cost, we depart from Ding et al. in the following respects.

First, Ding et al. assume that urban rents grow deterministically over time, such that

the date at which land is developed is also non-stochastic. In contrast, we assume

that urban rents evolve stochastically and, thus, the development timing is also

1 Urban sprawl can have many adverse effects on local communities as a result of car-dependent
communication on the urban fringe, congested highway systems, and less green-space (Juergensmeyer
and Roberts, 2003). Consequently, many local communities employ growth management controls to
rectify these negative impacts. These control programs include: The time or phased growth control,
as developed by Ramapo, New York; the population control strategy listed in the Boca Raton plan in
Florida; and the urban growth boundary control employed in the Oregon and Minnesota states.
Alternatively, some communities employ policies to raise the cost of development in order to curb
growth. These policies include municipal exactions, regulatory delays in the approval process (Mayo
and Sheppard, 2001), and impact fees. See the review paper by Brueckner (2007), which investigates
the effects of three commonly employed interventions, including urban growth boundaries, FAR (floor
area ratio) restrictions, and cost-increasing regulations.
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stochastic. Second, Ding et al. assume that the growth control policy is time

invariant, while we allow the regulator to have the option to slacken the control when

urban rents move upward. Our assumption is more consistent with the existing

land-use planning system, which requires local governments to periodically change

city boundaries as population grows (see, e.g., Ding et al., 1999; Jaeger and Plantinga,

2007). Finally, we assume that the regulator incurs costs to implement the control

policy, while Ding et al. abstract from them.

Similar to Ding et al., we find that the regulator will set a more stringent

boundary control policy if either the development cost, the agricultural rent, the

commuting cost, or the stock of infrastructure increases. Our paper contributes to

the literature by pointing out that the regulator will tighten the boundary control if

developers expect urban rents to grow less rapidly or become more volatile, or if the

implementation cost decreases.

This article assumes that the regulator may need to use growth boundary controls

to correct inefficiencies associated with the pricing of a public good. This contrasts

with several articles that employ the amenity-creation model, which assumes that

development exerts a negative externality on city residents. These articles include

Cooley and LaCivita (1982), Brueckner (1990), Engle, Navarro and Carson (1992),

Helsley and Strange (1995), Sakashita (1995), Brueckner and Lai (1996), Sasaki
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(1998), Turnbull (2004a), and Jou and Lee (2008). This article also contrasts with

several articles that employ the supply-restriction model, which argues that housing

price increases with the decrease of housing supply created by growth controls. See,

for example., Brueckner (1995) and Brueckner and Lai (1996).

The remaining sections are organized as follows. The next section presents the

basic assumptions of our model. In Section III, we derive the choice of development

timing and the city boundary in competitive equilibrium as well as the rule for a

regulator to design the efficient boundary control. In Section IV, we employ

plausible parameters to investigate how various forces that are related to the demand

and supply conditions of the real estate market affect both the equilibrium and the

efficient city boundary. The final section concludes and suggests directions for

future research.

II. The Model

Our basic model extends the models of Capozza and Helsley (1990) and Ding et al.

(1999). Consider a linear open city with all employment (the CBD) located at one

end. The city has perfectly competitive factor and product markets. Residents

located D miles from the CBD must allocate their income, ( )y t , so as to pay for
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the numeraire good, land rents, R , and transportation costs D , where  ( 0 )

represents the commuting cost per mile. At date 0t  an absentee landowner, who

is also a risk-neutral developer, faces a discount rate denoted by .2 The landowner

has a parcel of vacant land (normalized at one unit) at location D, which yields a rent

equal to ( 0 ), such that it is never optimal for the landowner to abandon the

vacant land. At any time 0t  , the landowner is able to develop the vacant land at

the cost of F , which is fully irreversible.3

As in Ding et al. (1999), we assume that there exists a congestible public good, z ,

which must be provided to all residents of the urban area, but is rival in consumption.

Examples of these kinds of goods include education, water and waste-water services,

and police and fire protection (Ding et al., 1999). The public good is produced with

a fixed stock of urban infrastructure, k , and the variable input, m , such that the

public good production function can be specified as

( , , )z G k m n , (1)

where n represents the urban population and / 0G m   and / 0G n  ,

implying that the level of the public good rises with variable inputs and decreases

2 We can generalize our model into a risk aversion environment in the manner of Cox and Ross (1976).
3 McFarlane (1999) argues that investment on land development will be fully irreversible if demolition
costs are extremely high. Similarly, Riddiough (1997) suggests that irreversibility is a reasonable
assumption for real estate, in which the physical asset is long-lived and switching costs to alternative
uses are quite high. Turnbull (2005) argues that the irreversibility assumption may not be realistic,
but provides an analytically tractable solution.
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with population.

Assuming that input prices are unit, and that local governments adjust the

variable input to maintain z fixed at a constant level, z , a public good variable

cost function may be specified as

2m n k . (2)

Equation (2), which indicates that the cost of maintaining a constant level of the

public good rises with population, resembles that used by Brueckner (1997) and in the

literature on clubs.

Following Ding et al., we assume that local governments set the price of a

congestible public good at average cost rather than marginal cost so as to yield a

balanced budget. Consequently, city residents may become better off when the city

population is reduced through the application of a growth boundary control. The

control has no effect on the utility level of consumers, however, because we assume

that the city is too small. All consumers have identical utility functions, which have

as arguments a numeraire good, c , land, , and the public good, z . If each

resident consumes one unit of land, the price of the numeraire good is one, and the

costs of the public good are paid by landowners, then using the budget constraint, we

can construct a representative utility function as given by
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( , , ) ( ( )) , , ) ( )v c z v y t R D z u t     , (3)

where under open city assumptions, resident utility must equal exogenous utility

levels. From Equation (3), we can construct a bid rent function as given by

( , ( )) ( ) ,R D x t x t D  (4)

where ( ) ( )y t x t c  , and the stochastic factor ( )x t follows the arithmetic

Brownian motion

( ) ( ),dx t dt d t  0, 0, (5)

where  is the constant drift rate,  is the instantaneous volatility of ( )x t , and

( )d t is an increment to a standard Wiener process.4 The specification of Equation

(4) indicates that the income of residents is the sum of two parts: the fixed part of

c and the stochastic part of ( )x t .

Our assumptions differ from those of Ding et al. (1999) in the following respects.

First, we assume that urban rents evolve stochastically as in Equation (5), while Ding

et al. assume that these rents are deterministic. Second, we allow a regulator to set a

time-contingent boundary control policy, while Ding et al. assume that the control is

4 Our specification is the same as that assumed in Capozza and Helsley (1990), Capozza and Li (1994),
and Capozza and Sick (1994). The arithmetic Brownian motion of urban rents is supported by the
empirical data, but suffers the shortcoming that urban rents may be negative. See a thorough
discussion in Capozza and Li (1994).
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time invariant.5 Finally, we assume that the regulator incurs costs to implement the

control policy, while Ding et al. abstract from them. With these differences, we can

derive several testable implications that are novel to the literature, as shown later.

Given that the public good is inefficient priced, local governments can thus

implement two broad types of policies to correct this (Turnbull, 2004a): (i) Fees, or

special exactions, imposed on newly developed property; and (ii) direct quantity

restrictions in the form of urban growth boundaries, greenbelt preserves, land banks,

or development moratoria. We will focus only on the design of growth boundary

controls.

An individual landowner will choose a date at which to develop vacant land.

The social planner, who anticipates the development timing chosen by the developer,

can set an efficient level for the city boundary. We will sequentially investigate the

developer’s and the social planner’s decision in the following section.

III. Choices of Development Timing

We assume that a regulator implements a growth boundary control policy at the

current time 0t  . Therefore, this policy is anticipated by developers when they

5 Ding et al. (1999) allow the regulator to periodically change the control in their extended model that
allows the regulator to undertake lumpy infrastructure investment.
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look to develop at any future date. Suppose that we denote (0)x as x , and T as

the time of development here and subsequently. The problem for an individual

landowner is to determine the point at which it is optimal to develop, so as to

maximize the expected net present value of one unit of vacant land, which is given by

0 0
( ( ) )

T T
T

E e d e x D nk d e F
           . (6)

Equation (6) indicates that the expected net present value of returns to the unit plot of

land at a particular location D is the sum of the returns to vacant land received until

time T , plus the expected present value of land rent beginning at the time of

development, less the expected present value of the sum of the cost paid for the public

good and the up front developing costs.

We can rewrite Equation (6) as:

0 ( ( ) ) .T
T

E e x D nk d e F
             (7)

In Equation (7), the first term is the expected present value of agricultural rents,

assuming that the vacant land is never converted to urban use, while the remaining

term is the developer’s option value to delay development. The problem for the

developer is then equivalent to choosing an optimal date to maximize this option

value and, therefore, can be written as:
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0( ) max [ ( ) ] .T
TT

V x E e x D nk d e F
           (8)

The solution for ( )V x must satisfy the fundamental differential equation of optimal

stopping given by:

2
2

2
1 ( ) ( )

( ) 0.
2

V x V x
V x

xx

 
   


(9)

Substituting the term xe into Equation (9) yields the quadratic equation given by:

2 21
( ) 0.

2
  (10)

The solution to Equation (9) is then given by:

1 2
1 2( ) x xV x A e A e   , (11)

where 1A and 2A are constants to be determined, and 1 and 2 are,

respectively, the larger and smaller roots of Equation (10):

2 2
1 2 2

2 2
2 2 2

1
2 0,

1
2 0.


    

 


    
 

(12)

A landowner chooses the timing of development, which is characterized by *x ,

the critical value of x that triggers property development. This critical value, and

1A and 2A in Equation (11), are obtained from the boundary conditions given by:

lim ( ) 0,
x

V x


 (13)

*
*

2( )
x D nk

V x F
   

      
    

, (14)
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and

*( ) 1
.

V x
x




 
(15)

Equation (13) is the limit condition, which states that the value of the option to

develop vacant land is worthless, as the state of nature is extremely poor, i.e., when

the stochastic factor x approaches minus infinity. Equation (14) is the

value-matching condition, which states that, at the optimal timing of development, a

landowner should be indifferent as to whether vacant land is developed or not.

Equation (15) is the smooth-pasting condition, which requires that the landowner not

obtain any arbitrage profits from deviating from the optimal timing of development.

Solving Equations (13) to (15) simultaneously yields:

*
1

1
1

1
,xA e


(16)

2 0,A  (17)

and

*

1

1
( , )x D n F kn D


    

 
. (18)

Differentiating *( , )x D n with respect to its underlying parameters yields the

following results.
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Proposition 1. Developers will delay development ( *( , )x D n increases) if: (i) they

incur larger development costs ( F increases); (ii) they receive more rents from

vacant land (increases); (iii) they expect urban rents to become more volatile (

increases); (iv) the regulator increases the stock of infrastructure ( k increases); (v)

urban residents incur larger commuting costs ( increases); (vi) they expect urban

rents to increase less rapidly over time ( decreases); (vii) their land is located far

away from the CBD ( D increases); and (viii) city population grows ( n increases).

The reason for Proposition 1 is as follows. When deciding whether to develop,

developers must compare the opportunity cost from delaying development (including

the option value from waiting and the value of vacant land), with the net value from

development. They will delay development either because the opportunity cost

increases (scenarios (ii) and (iii)), the net value from development decreases

(scenarios (i), (iv), (v), (vii), and (viii)), or the opportunity cost is decreased by less

than the decrease in the net value from development (scenario (vi)).

Substituting 1A given by Equation (16) and 2A given by Equation (17) into

Equation (10) yields the option value from waiting as given by:

*
1( ( , ))

1

1
( ) .x x D nV x e 


(19)

The value of vacant land and that of urban land are thus respectively given by
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*
1( ( , ))

1

1
( , , ) x x D n

aV x D n e 
 
 

, if *( , )x x D n , (20)

and

2( , , )u
x D nk

V x D n F
  

     
   

, if *( , )x x D n .

Having determined the optimal development strategy ( *x ) at a given location D ,

we now follow Fujita (1982) and Turnbull (1988) and ask: Given a state of nature

denoted by ( )x t , what will be the location *( ( ))D x t , which will be associated with

the state-contingent optimal timing of development? A developer, however,

understands the urban growth process and acts with rational expectations. In

particular, he knows that the city grows outward over time and thus realizes that his

land will lie at the city’s boundary at the time of conversion. Since the city is linear,

the city’s population n is thus equal to the distance to the boundary, given that each

resident consumes one unit of land. In other words, in equilibrium when land at

location D is converted, the city’s population n will be equal to D . We can thus

impose n D , replace *x with ( )x t and D with * ( ( ))dD x t , and then transform

Equation (18) into:

*
0

1
( ( )) [ ( ) ]

( )dD x t x t a
k

 


, (21)

where 0
1

1
a F


   

 
, and it is required that 0( )x t a .

We may interpret Equation (21) as follows. Suppose that the state of nature ( )x t
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and the distance from the CBD, D , is such that ( )x t is greater than the *x given by

Equation (18). Some landowners will then develop vacant land further away from the

CBD, increasing D until *x rises to ( )x t . Equivalently, if the distance from the

CBD, D , is less than the * ( ( ))dD x t given by Equation (21), then some landowners

will develop vacant land further away from the CBD until D is increased to the point

* ( ( ))dD x t .6 Since the city grows outward, * ( ( ))dD x t is, in fact, the equilibrium city

boundary at time t .

Differentiating * ( ( ))dD x t with respect to its underlying parameters yields the

following results.

Proposition 2. Without any regulation, the city boundary will be contracted

( * ( ( ))dD x t decreases) if: (i) developers incur larger development costs ( F increases);

(ii) landowners receive higher agricultural rents (increases); (iii) developers expect

urban rents to be more volatile ( increases); (iv) the regulator increases the stock of

infrastructure ( k increases); (v) urban residents incur larger commuting costs (

increases); (vi) developers expect urban rents to increase less rapidly over time (

decreases).

The results of Proposition 2 come directly from Proposition 1. Specifically, if

6 The above argument resembles that of Pindyck (1988), when he explains the timing decision for
undertaking a continuous investment project. See also Lee and Jou (2010) for a thorough discussion
of this issue.
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developers delay development, then the equilibrium city boundary will also shrink.

For example, suppose that developers expect urban rents to become more volatile.

As indicated by Proposition 1(iii), developers will then delay development, because

their option value from waiting becomes more valuable. As a result, the equilibrium

city boundary will shrink, as developers are less inclined to transform vacant land for

urban use.

We can compare the above case with the first-best case in which the public good

is priced at the marginal cost, 2nk . Following similar procedures as above yields

the first-best growth boundary as given by

*

1

1 1
( ( )) [ ( ) ]

( 2 )fD x t x t F
k


   

  
. (22)

It is obvious that the equilibrium growth boundary shown in Equation (21) is broader

than the first-best level, as shown in Equation (22). Consequently, it is possible for

the regulator to implement a growth boundary control that enhances the social

welfare.

Since consumer utility is exogenous in our model, the social planner’s goal is

then to choose an efficient control to maximize the total land value, net of the

implementation cost. To derive total land value, the value expression in Equation (6)

is integrated across all locations D in the planner’s jurisdiction. The city boundary
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set by the social planner is denoted by cD , and thus city population, n will be

equal to cD , given that the open city is linear. Imposing this constraint yields the

objective function of the social planner as given by:

0
( ) [ ( , , )c

c

D
c u c

D Dc
Max W D Max V x D D dD  (23)

2( , , ) ( ) ]
c

B
a c d cD

V x D D dD D D   , 0 ,

where the outer boundary ofthe planner’s jurisdictions,denoted by B , is assumed to

be sufficiently large such that cB D . Inside the brackets of Equation (23), the first

integral is total urban land value, the second integral is total agricultural land value,

and the last term is the implementation cost, which indicates that the cost for the

regulator to monitor the vacant landowners is an increasing convex function of the

distance between the equilibrium city boundary and the controlled boundary. This is

plausible because the farther the distance of a parcel of land located from the

controlled city boundary, the more the costs (e.g., transportation costs) for the

regulator to monitor the owner of this parcel of land.

The efficient growth control, denoted by *
cD , is found by totally differentiating

( )cW D in Equation (23) with respect to cD and setting the result equal to zero.

This yields:

( , , ) ( , , )u c c a c c c
c

dW k
V x D D V x D D D

dD
  


(24)
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*1( ( , )) 2 ( ) 0c

c

B x x D D
d cD

k
e dD D D    

 .

Differentiating / cdW dD in Equation (24) with respect to cD yields

*
1

2
( ( , ))

2
( 2 )

[ 1 ]c cx x D D

c

d W k
e

dD
 

  


(25)

* *
1 1

2
( ( , )) ( ( , ))[ ] 2c c cx x D D x x B Dk

e e     


,

We must restrict  to be positive in order to derive an interior solution for cD .

The reason is as follows. Without any implementation cost ( 0 ), Equation (25)

indicates that 0 because * * * * * *( , ) ( , )d d c cx x D D x D D  (since *
dD is assumed

to be larger than *
cD ), such that the first two terms on the right-hand side of Equation

(25) are both positive. In other words, without any implementation cost, the

objective function for the social planner shown in Equation (23) becomes a strictly

convex function of the level of the boundary control, cD . As a result, the regulator

will either set the efficient boundary at * 0cD  or * *
c dD D , and thus the problem in

consideration becomes a trivial one. We thus consider only the case where 0 .

For this case, Equation (24) indicates that if a regulator slackens the boundary

control ( cD increases), then the society as a whole receives the value of urban land at

location cD , ( , , )u c cV x D D , but suffers the cost of the sum of the following three

items: ( , , )a c cV x D D , ckD


,
*

1( ( , ))c

c

B x x D D
D

k
e dD 

 , and 2 ( )d cD D  . The first
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term represents the loss of the value of agricultural land at location cD that is

transformed to urban use, the second term represents the costs borne by all existing

urban residents as new urban residents flow in. The third term represents the loss of

the option value borne by all owners of vacant land because as the regulator slackens

the boundary control, these landowners will respond to delay development (since

*( , ) / 0c cx D D D   ), thus reducing the option value from waiting.7 Finally, the last

term represents the cost savings associated with slackening the control policy.

We may compare *
cD with *

dD in Equation (21), the equilibrium city boundary,

which is determined by the condition that at the city boundary, urban land value is just

equal to vacant land value, i.e., * * * *( , , ) ( , , )u d d a d dV x D D V x D D . Equation (24)

suggests that the efficient city boundary is set by the condition

*
1( ( , ))

( , , ) ( , , ) 2 ( )
c

c

x x D DBc
u c c a c c d cD

kD k
V x D D V x D D e dD D D

 
    

  , which

implies that if the regulator sets the city boundary at the equilibrium level, then the

marginal cost of the control will be larger than the marginal benefit (provided that 

is sufficiently small). Consequently, the regulator can set an efficient boundary at a

lower level to enhance the social welfare.

Differentiating Equation (24) with respect to its underlying parameters yields the

7 This effect resembles those of the other forms of land use regulation policies, such as density ceiling
control (Jou and Lee, 2007; Turnbull, 1991), a threat to expropriate development rights (Riddiough,
1997; Turnbull, 2002), and the threat of a development moratorium (Turnbull, 2004b). See a
thorough review by Turnbull (2005).
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following results.

Proposition 3. The regulator should tighten the boundary control if (i) developers

incur larger costs to develop vacant land; (ii) landowners receive higher agricultural

rents; (iii) developers expect urban rents to evolve more volatile; and (iv) it is less

costly for the regulator to implement the control policy.

Proof: See Appendix A.

The reason for Proposition 3 is as follows. When the development cost

increases, a regulator should tighten the boundary control so as to avoid some

landowners to incur more costs to convert agricultural land into urban use. When

agricultural rents increase, the regulator should also tighten the boundary control

because the opportunity cost for landowners to transform vacant land into urban use

increases. As urban rents become volatile, those owners of vacant land will delay

development such that the regulator can tighten the boundary control to accommodate

this delaying effect. Finally, as the implementation cost decreases, the regulator

naturally has more incentives to tighten the control.

We may compare our results with those of Ding et al. (1999), who assume that

there exists no uncertainty, i.e., 0 . Substituting this condition into Equation (10)

yields 1 /, and thus the critical level of ( )x t that triggers development, as



21

shown in Equation (18), and the equilibrium city boundary, as shown in Equation (21),

will respectively become

*( , )x D n F nk D   , (26)

and

* 1
( ( )) [ ( ) ]

( )dD x t x t F
k

 


. (27)

We provide a rigorous proof for *( )x D shown in Equation (27) in Appendix B.

Figure 1 illustrates the main difference between our result and that of Ding et al.

(1999) for the case in the absence of any uncertainty. In that Figure, the horizontal

axis, ( )x t , has one-to-one correspondence with calendar time t because

( ) (0)x t x t  . The path *
dD is that shown in Equation (27), and *

cD is the cD

that satisfies Equation (24). Ding et al. design the efficient city boundary as the one

that imposes no control before a critical date, *t , and then sets the city boundary at

* *( ( ))dD x t afterwards. Without any uncertainty, both of ours and Ding et al.’s are

two different ways to control the city boundary. Ours is similar to that proposed by

Brueckner (1990), which is more lenient to those landowners whose land is located

far away from the CBD. Besides, the control also accommodates demand for urban

land because we assume that demand for urban land increases over time such that

urban rents also increase over time.
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When there is uncertainty, it is not plausible for a regulator to directly control the

development timing such that it is infeasible for the regulator to implement the control

set in Ding et al. It is, however, still possible to implement the control as addressed

in our framework, as shown in the next section.

IV. Numerical Analysis

We employ plausible parameter values to investigate how the characteristics of

demand and supply conditions in the real estate market affect the design of efficient

boundary controls. The benchmark values we choose are as follows. The fixed

component of urban rents is equal to 2.0 ( 2.0 ), the return to vacant land is fixed at

0.1 unit ( 0.1 ), and the development cost is set at 1 unit ( 1F  ). The factor that

shifts urban rents is expected to grow at 3% per year ( 3% ), and the volatility of

this shift factor is equal to 20% per year ( 20% ). As the distance from the CBD

increases by one mile, urban rents decrease by one-tenth unit ( 0.1 ). We also

assume that the stochastic factor that affects urban rents, i.e., ( )x t , is equal to 1. All

developer are risk-neutral and face a discount rate equal to 10% per year ( 10% ),

and the stock of infrastructure is normalized at one unit ( 1k  ). The outer boundary

of the planner’s jurisdictions is set at 15 miles ( 15B  ). Finally, the parameter
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associated with the implementation cost, , is set at 1,000 ( 1,000 ).

Given these parameter values, Table 1 shows that the equilibrium city boundary

is equal to 2.253 miles, i.e., * 2.253dD  ; the efficient city boundary is equal to 2.225

miles, i.e., * 2.225cD  , and the total social welfare *W is equal to 91.37, which is

0.85% greater than its counterpart in the absence of any regulation, i.e., 90.60.

Table 1 also shows that F changes in the region (0.5, 1.5), changes in the region

(0, 0.2),  changes in the region (15%, 25%), k changes in the region (0.5, 1.5),

 changes in the region (0.05, 0.15),  changes in the region (1%, 3%), and 

changes in the region (500, 1500), holding all other parameters at their benchmark

values.

Several important findings derived from Table 1. First, for all exogenous forces

except for the implementation cost factor (), increases in these factors have the same

qualitative effects on both the equilibrium city boundary and the efficient city

boundary. Specifically, similar to Ding et al. (1999), we find that an increase in

either the development cost, the agricultural rent, or the stock of infrastructure

decreases the optimal size of the city.8 Furthermore, we also find that a decrease in

the commuting cost expands the optimal city size.

8 The last scenario will hold in the framework of Ding et al. if they assume that the marginal cost of
providing the public good is increasing (rather than decreasing) in the stock of infrastructure.
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We contribute to the literature by furthermore providing the following testable

implications: The regulator will set a more stringent boundary control policy if

developers expect urban rents to grow less rapidly or to be volatile, or if the regulator

spends less to implement the control policy.

To explain our policy implications more clearly, we use the same benchmark

parameter values to generate Figure 2 (expect for ( )x t ), which presents a series of

stochastic rents ( )x t , the corresponding equilibrium city boundary, *
dD , and the

efficient city boundary, *
cD . Starting from 0t  and (0) 1x  , the figure shows

that the corresponding *
dD and *

cD are equal to 1.344 and 1.315, respectively.

Both the equilibrium city boundary *
dD and the efficient city boundary *

cD will not

increase unless ( )x t exceeds all its historical values. This occurs at those years:

t  0.1, 0.4, 1.3, 1.5, 1.9, 2.3, 3.1, 8.4, 9.3, 9.4, and 9.5. In other words, the

regulator will not alter the city boundary control when urban rents move downward,

but will slacken the control when urban rents move upward. This type of control,

which pushes the city boundary outward as time goes by,9 is also consistent with the

existing land-use planning system that requires local governments to periodically

change city boundaries as population grows (See, e.g., Ding et al. (1999) and Jaeger

and Plantinga (2007)).

9 Cumming (2010) reports how property speculators buy up land on the Auckland city outskirts and
waiting until the time was ripe to develop. City governments are thus usually forced to broaden the
boundary to meet the increase in demand for urban land.
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V. Conclusion

This article extends Ding et al. (1999) to investigate the design of growth

boundary controls in an open city in a framework where a congestible public good is

priced at average cost. Unlike Ding et al., we consider that urban rents evolve

stochastically over time and that the regulator can slacken the boundary control when

urban rents move upward. We provide three novel testable implications, namely, the

regulator will set a more stringent boundary control policy if (i) developers expect

urban rents to grow less rapidly; (ii) developers expect urban rents to be more volatile;

and (iii) it costs less for the regulator to implement the control policy.

Our article considers an open city model and, thus, suffers the shortcomings of

this consideration. As Brueckner (1990) indicates, this implies that population

pressure and the resulting excess demand for housing plays no role in determining the

market impact of growth controls. We can follow the supply-restriction model, as

outlined in both Brueckner (1995) and Helsley and Strange (1995), to take this into

account. Furthermore, we may follow Brueckner and Lai (1996) to distinguish

renters from landlords in the model. We may then compare the results of this article

with those of the more generalized model.
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Appendix A:

Totally differentiating Equation (24) with respect to F , , , and 

rearranging yields

*
1 0cD

F
 

 
 

, (A1)

*
2 0cD 

 
 

, (A2)

*
3 0cD 

 
 

, (A3)

and

*
4 0cD 

 
 

, (A4)

where as shown in Equation (25), 0 , and

1 ( / ) /cdW dD F   *
1

2
( ( , ) ) 0

( )c c cx x D D kD
k


   


,

*1
2

2
( / ) / ( ( , ) ) 0

( )c c c cdW dD x x D D kD
k

 
     

 
,

*
1( ( , ) )*1

3
1

1 1
[( )( ( , ) ) c cx D D x

c c
k

x D D x e 
   

   

*
1( ( , ) )*

2
1

1
( ( , ) ) ] 0

( )
cx B D x

c
k

x B D x e
k

    
  

,

given that 1 / 0  ,

and

4 2( ) 0d cD D    .
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Q.E.D.

Appendix B:

In the absence of any uncertainty ( )x x . Substituting this into Equation

(8) yields the objective function of the developer as given by

1
( ) max ( , ) [ ( ( )) ] T

T
V x U T x x T D nk F e


       

 
. (B1)

Intuitively, a landowner needs to decide to either develop immediately in the initial

period or delay development. The former occurs if 0 , while the latter occurs if

0 . Suppose that the landowner develops at a time * 0T T  . Differentiating

Equation (A1) with respect to T , and then setting the result equal to zero yields

**
*( , )

[ ( ) ] 0TU T x
F nk x D T e

T


     


. (B2)

The second-order condition is given by

*2 *

2
( , )

0TU T x
e

T


 


, (B3)

which holds if 0 .

Equation (B2) indicates that the interior solution for T is given by

* 1
[ ] 0T F nk D x     


, (B4)

which requires that

( )F nk D x    . (B5)
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Imposing * 0T  and replacing x by *x yields *x as shown in Equation (26).

Substituting *T T into Equation (B1) yields the option value of waiting as given

by

*

2( ) TV x e





. (B6)

Q.E.D.
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Table 1: Efficient Boundary Controls and Efficient Impact Fees.

Benchmark Case: 1F  , 0.1 , 0.2 , 1k  , 0.1 , 0.03 , 2 , ( ) 1x t  , 1,000 , 15B  ,

0.1 .

Variation in F

0.50 0.75 1.00 1.25 1.50
*
cD 2.270 2.247 2.225 2.201 2.179
*
dD 2.298 2.276 2.253 2.230 2.208
*W 92.76 92.06 91.37 90.69 90.01

* */c dD D 0.988 0.988 0.987 0.987 0.987

Variation in 

0.00 0.05 0.10 0.15 0.20
*
cD 2.315 2.270 2.225 2.179 2.134
*
dD 2.344 2.298 2.253 2.208 2.162
*W 79.16 85.26 91.37 97.51 103.68

* */c dD D 0.988 0.988 0.987 0.987 0.987

Variation in 

0.150 0.175 0.200 0.225 0.250
*
cD 2.323 2.274 2.225 2.174 2.124
*
dD 2.348 2.301 2.253 2.205 2.156
*W 82.51 86.80 91.37 96.19 101.22

* */c dD D 0.989 0.988 0.987 0.986 0.985

Variation in k

0.50 0.75 1.00 1.25 1.50
*
cD 4.117 2.895 2.225 1.799 1.502
*
dD 4.131 2.916 2.253 1.836 1.549
*W 123.95 102.78 91.37 84.43 79.95

* */c dD D 0.997 0.993 0.987 0.980 0.970

Variation in 

0.050 0.075 0.100 0.125 0.150
*
cD 2.318 2.271 2.225 2.179 2.134
*
dD 2.360 2.305 2.253 2.203 2.155
*W 109.95 99.41 91.37 85.16 80.11

* */c dD D 0.982 0.985 0.987 0.989 0.990
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Variation in 

0.01 0.02 0.03 0.04 0.05
*
cD 2.157 2.193 2.225 2.251 2.275
*
dD 2.182 2.220 2.253 2.282 2.307

*W 75.73 83.16 91.37 100.33 109.98
* */c dD D 0.989 0.988 0.987 0.987 0.986

Variation in 

500 750 1000 1250 1500
*
cD 2.193 2.214 2.224 2.230 2.234
*
dD 2.253 2.253 2.253 2.253 2.253

*W 92.23 91.65 91.37 91.21 91.11
* */c dD D 0.973 0.983 0.987 0.990 0.992

Note: The terms, F , , , k , , , , , B , , *
cD , *

dD , and *W denote the development costs, the
return to vacant land, the volatility of the stochastic urban rent, the stock of infrastructure, the commuting costs per unit
distance to the CBD, the expected growth rate of the stochastic rent, the fixed component of urban rents, the parameter
associated with the implementation cost, the outer boundary of the planner’s jurisdiction, the discount rate per year, the
efficient city boundary, the equilibrium city boundary, and total social welfare.
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Dd*

Dc*

Figure 1: The efficient city boundary control in the absence of any uncertainty. This graphs shows

that the city boundary designed by Ding et al. (1999) is to impose no control before *t t such that

the efficient city boundary is the same as the equilibrium city boundary, * ( ( ))dD x t . Immediately

after *t t , the regulator then imposes a fixed level of city boundary at * *( ( ))dD x t . By contrast, the

efficient city boundary in our framework, *( ( ))cD x t , is always lower than the equilibrium level,
* ( ( ))dD x t .

( )x t

* *( ( ))dD x t

*( )x t
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Figure 2: The Equilibrium City Boundary, *
dD , the Efficient City Boundary, *

cD , and the Stochastic

Component of Urban Rents, ( )x t , as a Function of Calendar Year, t . Both *
dD and *

cD will not

change unless ( )x t exceeds ( )x , for all t .

t (years)
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